In physics, the optical theorem is a general law of wave scattering theory, which relates the zero-angle scattering amplitude to the total cross section of the scatterer. It is usually written in the form
Because the optical theorem is derived using only conservation of energy, or in quantum mechanics from conservation of probability, the optical theorem is widely applicable and, in quantum mechanics, includes both elastic and inelastic scattering.
The generalized optical theorem, first derived by Werner Heisenberg, follows from the unitary condition and is given byLandau, L. D., & Lifshitz, E. M. (2013). Quantum mechanics: non-relativistic theory (Vol. 3). Elsevier.
The equation was later extended to quantum scattering theory by several individuals, and came to be known as the Bohr–Peierls–Placzek relation after a 1939 paper. It was first referred to as the "optical theorem" in print in 1955 by Hans Bethe and Frederic de Hoffmann, after it had been known as a "well known theorem of optics" for some time.
All higher terms, when squared, vanish more quickly than , and so are negligible a great distance away. For large values of and for small angles, a Taylor expansion gives us
We would now like to use the fact that the intensity is proportional to the square of the amplitude . Approximating as , we have
|\psi|^2 &\approx \left|e^{ikz}+\frac{f(\theta)}{z}e^{ikz}e^{ik(x^2+y^2)/2z}\right|^2 \\
&= 1+\frac{f(\theta)}{z}e^{ik(x^2+y^2)/2z}+\frac{f^*(\theta)}{z}e^{-ik(x^2+y^2)/2z}+\frac{|f(\theta)|^2}{z^2}.
\end{align}
If we drop the term and use the fact that , we have
Now suppose we Integral over a screen far away in the xy plane, which is small enough for the small-angle approximations to be appropriate, but large enough that we can integrate the intensity over to in x and y with negligible error. In optics, this is equivalent to summing over many fringes of the diffraction pattern. By the method of stationary phase, we can approximate in the below integral. We obtain
where A is the area of the surface integrated over. Although these are improper integrals, by suitable substitutions the exponentials can be transformed into complex Gaussians and the definite integrals evaluated resulting in:
\int |\psi|^2\,da &= A + 2\operatorname{Re}\left[\frac{f(0)}{z}\,\frac{2\pi i z}{ k}\right] \\
&= A - \frac{4\pi}{k}\,\operatorname{Im}[f(0)].\end{align}
This is the probability of reaching the screen if none were scattered, lessened by an amount , which is therefore the effective scattering cross section of the scatterer.
|
|